Abstract

In this paper, the modified constrained volume model, which describes the evolution of anisotropy of immiscible polymer blends, composed of Newtonian components, was examined during shearing motion (steady and oscillatory) at various viscosity ratio values. We found that the linear correction to the rate of deformation tensor causes the droplet to change its volume at viscosity ratio values lower than unity, and to cause premature tumbling at viscosity ratio values larger than unity, in a case where retraction, breakup, and coalescence modules of the model were turned off. The use of Eshelby tensor, together with a closure to relate anisotropy to the Eshelby concentration tensor, mostly solved the problem. The model’s predictions are then shown at various capillary number values and at various viscosity ratio values. Comparison of model predictions to single droplet data at nonunity viscosity ratio value showed good agreement. Finally, model predictions of first normal stress difference during startup of steady shear are compared to experimental rheological results for immiscible polymer blends that are available in literature. Good predictions can be achieved by the introduction of a new switch function that controls the retraction and breakup modules. The model’s predictions at large amplitude oscillatory shear were examined. It was found that linear corrections to the velocity gradient tensor can be used for strains up to 100 %. For larger strain values, the Eshelby concentration tensor must be used.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call