Abstract
The classical Yang-Baxter equation as formulated by Semenov-Tyan-Shanskii is generalized to the case of Lie superalgebras [Formula: see text], for Grassmann even Yang-Baxter operators ℛ. When ℛ is “unitary” with respect to a super trace form defined on [Formula: see text], we prove the existence of two natural Poisson brackets on the dual [Formula: see text]*. If [Formula: see text] is the infinite-dimensional Lie superalgebra of N=1 super pseudodifferential operators, we recover the super Gel’fand-Dikii brackets underlying the N=1 super KP hierarchy and its reductions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.