Abstract

Myricetin and gossypetin, two hexahydroxylated flavonoids, are capable of modifying low density lipoprotein (LDL) to increase greatly its uptake by macrophages. When human 125I-labelled LDL was incubated with 100–1000 μM myricetin or gossypetin, it was subsequently endocytosed much faster by mouse peritoneal macrophages. This modification did not occur at a concentration of 10 μM. Nine other flavonoids containing up to five hydroxyl substituents did not modify LDL to any great extent at 100 μM. The modification of LDL by 100 μM myricetin was time-dependent and complete by 6 hr. Flavonoids can sometimes act as pro-oxidants but myricetin did not act by oxidizing the LDL, as the LDL lipid hydroperoxide content was not increased by myricetin, nor did it promote the depletion of the endogenous antioxidant α-tocopherol in the LDL. High concentrations of myricetin caused the aggregation of LDL particles, as judged by light microscopy, agarose gel electrophoresis, retention by a membrane filter and sedimentability by centrifugation. SDS-PAGE indicated that the apolipoprotein B-100 molecules of LDL particles were covalently crosslinked. The uptake and degradation by macrophages of myricetin-modified 125I-labelled LDL reached saturation at about 10 μg protein mL , suggesting the existence of a high affinity uptake process for the modified LDL. The uptake of myricetin-modified 125I-labelled LDL was not competed for by a large excess of non-labelled native LDL or acetylated LDL. We conclude that myricetin and gossypetin at high concentrations are capable of modifying LDL by a novel non-oxidative mechanism to a form taken up by macrophages by a high affinity process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.