Abstract

The modes of a strongly magnetized charged Bose gas are presented for ultra-low temperatures. For longitudinal oscillations propagating parallel to the magnetic field the dispersion relation is found to be dominated by the one-dimensional field-free plasmon dispersion relation as found by Alexandrov, Beere and Kabanov recently in reference [1], while for propagation perpendicular to the magnetic field they are found to be influenced by the cyclotron motion of the particles. Dispersion relations for these modes known as Bernstein modes are given near the cyclotron frequency and its first two harmonics. The dispersion relations for transverse modes in the system are then presented for the cases of photon propagation perpendicular and parallel to the direction of the magnetic field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call