Abstract

We conduct a systematic study of the angular momentum problem in numerical simulations of disk galaxy formation. We investigate the role of numerical resolution using a semi-cosmological setup which combines an efficient use of the number of particles in an isolated halo while preserving the hierarchical build-up of the disk through the merging of clumps. We perform the same simulation varying the resolution over 4 orders of magnitude. Independent on the level of resolution, the loss of angular momentum stays the same and can be tied to dynamical friction during the build-up phase. This is confirmed in a cosmological simulation. We also perform simulations including star formation and star formation and supernova feedback. While the former has no influence on the angular momentum problem, the latter reduces the loss to a level potentially in agreement with observations. This is achieved through a suppression of early star formation and therefore the formation of a large, slowly rotating bulge. We conclude that feedback is a critical component to achieve realistic disk galaxies in cosmological simulations. Numerical resolution is important, but by itself not capable of solving the angular momentum problem.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call