Abstract

In this work, we discuss simulations, along with a benchmarking experiment, performed using the xRAGE code which demonstrate the ability of a laser model to predict laser-driven, high-energy-density shock hydrodynamics with good fidelity. This directly contributes to our ability to model hydrodynamic-instability dynamics produced by a laser drive typical of those available at OMEGA, OMEGA-EP, NIF, and similar facilities. In particular, we show how the laser model is essential for predicting deceleration-phase Rayleigh-Taylor arising from laser turn-off. We do this using the experimental case of a seeded single-mode perturbation. Then, we turn to a seeded multimode perturbation to show how the above result permits us to access the modeling of hydrodynamic mixing, a topic of interest for future work.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call