Abstract

Artificial intelligence (AI) holds the potential to make significant advancements in pathology. However, its actual implementation and certification for practical use are currently limited, often due to challenges related to model transferability. In this context, we investigate the factors influencing transferability and present methods aimed at enhancing the utilization of AI algorithms in pathology. Various convolutional neural networks (CNNs) and vision transformers (ViTs) were trained using datasets from two institutions, along with the publicly available TCGA-MIBC dataset. These networks conducted predictions in urothelial tissue and intrahepatic cholangiocarcinoma (iCCA). The objective was to illustrate the impact of stain normalization, the influence of various artifacts during both training and testing, as well as the effects of the NoisyEnsemble method. We were able to demonstrate that stain normalization of slides from different institutions has asignificant positive effect on the inter-institutional transferability of CNNs and ViTs (respectively +13% and +10%). In addition, ViTs usually achieve ahigher accuracy in the external test (here +1.5%). Similarly, we showcased how artifacts in test data can negatively affect CNN predictions and how incorporating these artifacts during training leads to improvements. Lastly, NoisyEnsembles of CNNs (better than ViTs) were shown to enhance transferability across different tissues and research questions (+7% Bladder, +15% iCCA). It is crucial to be aware of the transferability challenge: achieving good performance during development does not necessarily translate to good performance in real-world applications. The inclusion of existing methods to enhance transferability, such as stain normalization and NoisyEnsemble, and their ongoing refinement, is of importance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call