Abstract

Abstract Recognition and extraction of features in a nonparametric density estimate are highly dependent on correct calibration. The data-driven choice of bandwidth h in kernel density estimation is a difficult one that is compounded by the fact that the globally optimal h is not generally optimal for all values of x. In recognition of this fact a new type of graphical tool, the mode tree, is proposed. The basic mode tree plot relates the locations of modes in density estimates with the bandwidths of those estimates. Additional information can be included on the plot indicating factors such as the size of modes, how modes split, and the locations of antimodes and bumps. The use of a mode tree in adaptive multimodality investigations is proposed, and an example is given to show the value in using a normal kernel, as opposed to the biweight or other kernels, in such investigations. Examples of such investigations are provided for Ahrens's chondrite data and van Winkle's Hidalgo stamp data. Finally, the bivariate mode tree is introduced, together with an example using Scott's lipid data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.