Abstract

BackgroundWalking and cycling to school are one source of regular physical activity. The aim of this two years observational study in pre-pubertal children was to evaluate if walking and cycling to school was associated with higher total amount of physical activity and larger gain in bone mineral content (BMC) and bone width than when going by car or bus.Methods133 boys and 99 girls aged 7-9 years were recruited to the Malmö Prospective Paediatric Osteoporosis Prevention (POP) study. BMC (g) was measured by dual X-ray absorptiometry (DXA) in total body, lumbar spine (L2-L4) and femoral neck (FN) at baseline and after 24 months. Bone width was measured in L2-L4 and FN. Skeletal changes in the 57 boys and 48 girls who consistently walked or cycled to school were compared with the 24 boys and 17 girls who consistently went by bus or car. All children remained in Tanner stage I. Level of everyday physical activity was estimated by accelerometers worn for four consecutive days and questionnaires. Comparisons were made by independent student's t-tests between means and Fisher's exact tests. Analysis of covariance (ANCOVA) was used to adjust for group differences in age at baseline, duration of organized physical activity, annual changes in length and BMC or bone width if there were differences in these traits at baseline.ResultsAfter the adjustments, there were no differences in the annual changes in BMC or bone width when comparing girls or boys who walked or cycled to school with those who went by car or bus. Furthermore, there were no differences in the levels of everyday physical activity objectively measured by accelerometers and all children reached above the by the United Kingdom Expert Consensus Group recommended level of 60 minutes moderate to vigorous physical activity per day.ConclusionA physical active transportation to school for two years is in pre-pubertal children not associated with a higher accrual of BMC or bone width than a passive mode of transportation, possibly due to the fact that the everyday physical activity in these pre-pubertal children, independent of the mode of school transportation, was high.

Highlights

  • Walking and cycling to school are one source of regular physical activity

  • We launched in Malmö, Sweden a prospective, controlled exercise intervention study, called The Malmö Paediatric Osteoporosis Prevention (POP) study, which was designed to annually assess musculo-skeletal development in 133 boys and 99 girls from age 7-9 years and onwards

  • There were in girls no group differences at baseline when comparing those who walked or cycled to school with those who went by car or bus in life style factors (Table 1), age, anthropometry or bone mineral content (BMC) (Table 2) while those who walked or cycled had a wider femoral neck (Table 2)

Read more

Summary

Introduction

Walking and cycling to school are one source of regular physical activity. The aim of this two years observational study in pre-pubertal children was to evaluate if walking and cycling to school was associated with higher total amount of physical activity and larger gain in bone mineral content (BMC) and bone width than when going by car or bus. Reports have inferred that osteoporotic fractures account for 0.83% of the global burden of non-communicable disease and are a significant cause of morbidity and mortality, in the developed countries [2]. This bone fragility may have its foundation in growth [3]. Physical activity has been described as a strategy to optimize skeletal development, as reports have inferred both highly intense [5,6] and moderately intense training [7,8,9] to increase the accrual of bone mineral. The school has been regarded as one arena to launch such programs, as it is one of the few places where all children can be targeted [10,11]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call