Abstract

The inhibitory action of chlorpromazine on skeletal muscle has been studied with isolated preparations. In the nerve-muscle preparations of the frog sartorius and the rat diaphragm, the twitch responses to indirect stimulation are much more strongly depressed by chlorpromazine than those to direct stimulation. The conductivity of the nerve trunk is unaffected. The contractures of the frog rectus abdominis muscle caused by acetylcholine are depressed by chlorpromazine,but the contractures due to KCl are not influenced. Larger doses of chlorpromazine cause contracture by themselves, and this cannot be prevented by tubocurarine. In the sartorius muscle of the toad, the depolarization due to acetylcholine is reduced by chlorpromazine. The paralysing action of chlorpromazine adds to that of tubocurarine, and is antagonized to some extent by eserine or neostigmine. Muscles treated with chlorpromazine do not completely recover on washing. High concentrations of chlorpromazine depress the release of acetylcholine by motor-nerve stimulation, although they do not affect the enzymic synthesis of acetylcholine by acetone-dried powder of guinea-pig brain. The differences between the neuromuscular block produced by chlorpromazine and that by tubocurarine are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.