Abstract

The absence of light protection of neonatal total parenteral nutrition (PN) contributes to the generation of 4-hydroxynonenal and peroxides. 4-Hydroxynonenal is suspected to be involved in PN-related liver complications. To find a practical modality to reduce 4-hydroxynonenal in PN and assess in vivo the impact of PN containing low 4-hydroxynonenal concentration. Six modalities of delivering PN were compared for the in vitro generation of peroxides and 4-hydroxynonenal: 1) MV-AA-L: light-protected (-L) solution containing multivitamin (MV) mixed with amino acids + dextrose (AA); 2) MV-AA+L: MV-AA without photo-protection (+L); 3) MV-LIP+L: MV mixed with lipid emulsion (LIP). LIP was a) Intralipid20%(®) or b) Omegaven(®). Hepatic markers of oxidative stress (glutathione, F(2α)-isoprostanes, GS-HNE) and inflammation (mRNA of TNF-α and IL-1) were measured in newborn guinea pigs infused during 4-days with MV-AA+L compounded with Intralipid20%(®) or Omegaven(®). Hydroperoxides and 4-hydroxynonenal were the lowest in MV-AA-L and the highest in MV-LIP+L. MV-AA+L with Omegaven(®) was associated with the lowest levels of markers of oxidative stress and inflammation. Compared to Intralipid20%(®), Omegaven(®) reduces oxidative stress associated with PN and prevents liver inflammation. These findings offer an alternative strategy to light protection of PN, which in the clinical setting is a cumbersome modality.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call