Abstract

Hydroxyl radicals (OH*) play a crucial role in atmospheric chemistry and biological processes. In this study, Born-Oppenheimer molecular dynamics simulations are performed under ambient conditions for a hydroxyl radical in a water nanodroplet containing 191 water molecules. Density functional theory calculations are performed at the BLYP-D3 level with some test calculations at the B3LYP-D3 level. In two 150 ps trajectories, either with OH* initially located in the interior region or at the surface of the water nanodroplet, the OH* radical ends up in the subsurface layer of the nanodroplet, which is different from the "surface preference" predicted from previous empirical force field simulations. The solvation structure of OH* contains fluctuating hydrogen bonds, as well as a two-center three-electron hemibond in some cases. The mobility of OH* is enhanced by hydrogen transfer, which has a free energy barrier of ∼4.6 kcal mol-1. The results presented in this study deepen our understanding of the structure and dynamics of OH* in aqueous solutions, especially around the air-water interface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.