Abstract

The fungal cell wall is the first point of interaction between an invading fungal pathogen and the host immune system. The outer layer of the cell wall is comprised of GPI anchored proteins, which are post-translationally modified by both N- and O-linked glycans. These glycans are important pathogen associated molecular patterns (PAMPs) recognised by the innate immune system. Glycan synthesis is mediated by a series of glycosyl transferases, located in the endoplasmic reticulum and Golgi apparatus. Mnn2 is responsible for the addition of the initial α1,2-mannose residue onto the α1,6-mannose backbone, forming the N-mannan outer chain branches. In Candida albicans, the MNN2 gene family is comprised of six members (MNN2, MNN21, MNN22, MNN23, MNN24 and MNN26). Using a series of single, double, triple, quintuple and sextuple mutants, we show, for the first time, that addition of α1,2-mannose is required for stabilisation of the α1,6-mannose backbone and hence regulates mannan fibril length. Sequential deletion of members of the MNN2 gene family resulted in the synthesis of lower molecular weight, less complex and more uniform N-glycans, with the sextuple mutant displaying only un-substituted α1,6-mannose. TEM images confirmed that the sextuple mutant was completely devoid of the outer mannan fibril layer, while deletion of two MNN2 orthologues resulted in short mannan fibrils. These changes in cell wall architecture correlated with decreased proinflammatory cytokine induction from monocytes and a decrease in fungal virulence in two animal models. Therefore, α1,2-mannose of N-mannan is important for both immune recognition and virulence of C. albicans.

Highlights

  • Candida albicans is a polymorphic fungus that forms part of the natural human microflora

  • Many adverse conditions result in predisposition to oral and vaginal infections and, under circumstances where the host immune system becomes severely compromised as a consequence of malignancy, trauma or chemotherapy, C. albicans can invade underlying epithelial cells and disseminate via the bloodstream and cause systemic disease

  • All of the major cell wall carbohydrate components of fungal walls serve as pathogen associated molecular patterns (PAMPs), which are recognised by the innate immune system through pattern recognition receptors (PRRs) on the surface of immune effector cells [5,13,14,15,16,17]

Read more

Summary

Introduction

Candida albicans is a polymorphic fungus that forms part of the natural human microflora. The cell wall is comprised of an inner skeletal layer of chitin and b-glucans (b1,3and b1,6-glucan) and an outer layer of highly glycosylated mannoproteins [4,5,6]. These proteins are decorated with linear O-linked mannan and highly branched N-linked mannan, which can be elaborated with additional mannan side chains attached via a phosphodiester linkage known as phosphomannan (PM). All of the major cell wall carbohydrate components of fungal walls serve as pathogen associated molecular patterns (PAMPs), which are recognised by the innate immune system through pattern recognition receptors (PRRs) on the surface of immune effector cells [5,13,14,15,16,17].

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call