Abstract

Alzheimer Disease (AD) is the most prevalent type of dementia. Pathological changes in the AD brain include Amyloid β-protein (Aβ) plaques and Neurofibrillary Tangles (NFTs), as well as extensive neuronal and synaptic loss. Matrix Metalloproteinase-2 (MMP-2) is a neutral, zinc-dependent protease that primarily targets extracellular matrix proteins. MMP-2 activity is strictly controlled, and its dysregulation has been implicated in a variety of pathologies, including AD. In this brief review, we discussed the contributions of dysregulated MMP-2 activity and an imbalanced interaction between MMP-2 and its endogenous inhibitor, Tissue Inhibitors of Metalloproteinase-2 (TIMP-2), to AD. We also described the underlying mechanisms of the effects of MMP-2/TIMP-2, both beneficial and detrimental, on AD, including: (1) MMP-2 directly degrades Aβ resulting in the clearance of Aβ deposits. Conversely, Aβ-induced MMP-2 may contribute to brain parenchymal destruction. (2) MMP-2 induces breakdown of BBB, and this deleterious effect could be reversed by TIMP-2. (3) MMP-2 disrupts oxidative homeostasis in AD. (4) MMP-2 has both proinflammatory/pro-angiogenetic and antiinflammatory/ anti-angiogenetic effects on AD. Besides, we discuss the clinical utility of MMP- 2/TIMP-2 as therapeutic targets for AD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call