Abstract

In six experiments, we used the Müller-Lyer illusion to investigate factors in the integration of touch, movement, and spatial cues in haptic shape perception, and in the similarity with the visual illusion. Latencies provided evidence against the hypothesis that scanning times explain the haptic illusion. Distinctive fin effects supported the hypothesis that cue distinctiveness contributes to the illusion, but showed also that it depends on modality-specific conditions, and is not the main factor. Allocentric cues from scanning an external frame (EF) did not reduce the haptic illusion. Scanning elicited downward movements and more negative errors for horizontal convergent figures and more positive errors for vertical divergent figures, suggesting a modality-specific movement effect. But the Müller-Lyer illusion was highly significant for both vertical and horizontal figures. By contrast, instructions to use body-centered reference and to ignore the fins reduced the haptic illusion for vertical figures in touch from 12.60% to 1.7%. In vision, without explicit egocentric reference, instructions to ignore fins did not reduce the illusion to near floor level, though external cues were present. But the visual illusion was reduced to the same level as in touch with instructions that included the use of body-centered cues. The new evidence shows that the same instructions reduced the Müller-Lyer illusion almost to zero in both vision and touch. It suggests that the similarity of the illusions is not fortuitous. The results on touch supported the hypothesis that body-centered spatial reference is involved in integrating inputs from touch and movement for accurate haptic shape perception. The finding that explicit egocentric reference had the same effect on vision suggests that it may be a common factor in the integration of disparate inputs from multisensory sources.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.