Abstract

Experimental evidence suggests that in the turbulent mixing layer the fundamental mechanism of growth is two-dimensional and little affected by the presence of vigorous three-dimensional motion. To quantify this apparent property and study the growth of streamwise vorticity, we write for the velocity field \[ {\boldmath V}(x, t) = {\boldmath U}(x, z, t) + {\boldmath u}(x, y, z, t), \] where U is two-dimensional and u is three-dimensional. In a first version of the problem U is independent of u, while in the second U is the spanwise average of V. In both cases the equation for u is linearized around U. The equations for U and u are solved simultaneously by a finite-difference calculation starting with a slightly disturbed parallel shear layer.The solutions provide a detailed description of the growth of the three-dimensional motion. They show that its characteristics are dictated by the distribution of spanwise vorticity which results from roll-up and pairing. Pairing inhibits its growth. The solutions also demonstrate that even when the three-dimensional flow attains large amplitudes it has a negligible effect on the interaction of spanwise vortices and thus on the growth of the layer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.