Abstract
A turbulent mixing layer in a water channel was observed at Reynolds numbers up to 3 × 106. Flow visualization with dyes revealed (once more) large coherent structures and showed their role in the entrainment process; observation of the reaction of a base and an acid indicator injected on the two sides of the layer, respectively, gave some indication of where molecular mixing occurs. Autocorrelations of streamwise velocity fluctuations, using a laser-Doppler velocimeter (LDV) revealed a fundamental periodicity associated with the large structures. The surprisingly long correlation times suggest time scales much longer than had been supposed; it is argued that the mixing-layer dynamics at any point are coupled to the large structure further downstream, and some possible consequences regarding the effects of initial conditions and of the influence of apparatus geometry are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.