Abstract
The mixing produced by a turbulent buoyant plume with finite mass flux in a room is examined analytically and numerically. The entrainment of ambient fluid into the ascending buoyant plume leads to a return flow in the room which carries fluid downwards from the top of the room. The cycling of ambient fluid through the buoyant plume and the return flow causes the density to become uniform and gradually evolve towards that of the source fluid. As a result the buoyancy flux associated with the input fluid decreases and the plume motion becomes dominated by the source momentum flux. We develop an asymptotic model of the mixing using buoyant plume theory for a momentum-dominated flow. This provides an analytical description of the evolution of the density in the room which is in excellent accord with a full numerical simulation, and provides an improved description of the experimental filling-box data originally presented by Baines & Turner (1969).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.