Abstract

Mathematical models of reactors for the polymerization of methylmethacrylate (MMA) have been developed and analyzed to elucidate reactor dynamics and to determine conditions for improved operation. The effects of mixing and heat transfer in an MMA polymerization reactor system have been explored by the development of an imperfect mixing model. To model imperfect mixing in polymerization, a reactor configuration using two tanks in parallel was used. Bifurcation diagrams developed using numerical analysis of the model have been drawn with two variable parameters, an exchange ratio, σ, and a volume ratio, κ. We use feed and coolant temperatures as bifurcation parameters. If variable parameters are small, the lower solution branch of the steady state solutions is quite different from that of a simple model that assumes perfect macro-mixing as bifurcation parameters change. If σ increases (κ=0.1, σ=1.0), the shape of a steady state solution curve differs significantly from that of a simple model as the feed temperature decreases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.