Abstract

Abstract Two layered magnetic Bethe lattice with varying coordination number q is introduced and numerically studied via exact recursion relations within a pairwise approach. The system is influenced by competing interlayer and intralayer nearest-neighbour (NN) coupling interactions and also by the crystal and external magnetic fields. Cases where both layers are ferromagnetic or one is ferro and the other antiferromagnetic are considered. System configurations’ energy calculations are used to devise some ground state phase diagrams that have proven useful for the investigation of the very low temperature behaviour of the model. Analysis of the thermal behaviours of the total magnetization within the model parameters’ space yield interesting phase diagrams which display fascinating properties, in particular the presence of tricritical points. Increasing negative values of the crystal field strength stabilizes the disordered paramagnetic phase and sometimes gives rise to wavy transition lines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.