Abstract
Binary adders are the fundamental building blocks to construct Data Processing arithmetic units. A novel one-bit full adder is presented in this paper which is designed by Mixed logic design style. In addition to small size transistors and reduced transistor activity compared to conventional CMOS (Complementary Metal Oxide Semiconductor) gates, it provides the priority between the High logic and Low logic for the computation of the output. Various logic topologies are used to design the one-bit full adder like High-Skew(Hi-Skew), Low-Skew(Li-Skew), TGL (Transmission Gate Logic) and DVL (Dual Voltage Logic). This new approach gives the better operating speed, low power consumption compared to conventional logic design by reducing the transistors activity and by improving the driving capability. This Mixed logic style provides 83.53% average power consumption and Propagation Delay of 14.02% at 0.8v. The H-SPICE simulation tool is used for construction and evaluation of the Full adder logic at different voltages. The 32nm model file is used for MOS transistors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Recent Technology and Engineering (IJRTE)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.