Abstract

The sacred ayahuasca brew, utilized by indigenous communities in the Amazon and syncretic religious groups in Brazil, primarily consists of a decoction of two plants: (i) the Amazonian liana known as Mariri or Jagube (Banisteriopsis caapi), and (ii) the shrub referred as Chacrona or Rainha (Psychotria viridis). While Chacrona leaves are rich in N,N-Dimethyltryptamine (DMT), a potent psychedelic, the macerated vine of Mariri provides beta-carboline alkaloids acting as monoamine oxidase inhibitors, preventing DMT's degradation. This study sequenced, assembled, and analyzed the complete genome of B. caapi's mitochondrion, yielding a circular structure spanning 503,502 bp. Although the mtDNA encompasses most plant mitochondrial genes, it lacks some ribosomal genes, presents some atypical genes, and contains plastid pseudogenes, suggesting gene transfer between organelles. The presence of a 7-Kb repetitive segment containing copies of the rrnL and trnfM genes suggests mitogenome isomerization, supporting the hypothesis of dynamic mitogenome maintenance in plants. Phylogenetics and phylogenomics across 24 Malpighiales confirms the sample's placement in the "Tucunacá" ethnovariety, aligning with morphological identification. This study spearheads efforts to decode the genome of this esteemed Malpighiaceae.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.