Abstract
Antigen receptor stimulation triggers cytosolic Ca2+ signals, which activate transcriptional and metabolic programs critical for immune function. B-cell receptor (BCR) engagement causes rapid cytosolic Ca2+ rise through the ubiquitous store-operated calcium entry (SOCE) pathway. Slc8b1, which encodes the mitochondrial Na+/Ca2+ exchanger (NCLX), extrudes Ca2+ out of the mitochondria and maintains optimal SOCE activity. Inhibition of NCLX in DT40 and A20 B lymphocyte lines was recently shown to impair cytosolic Ca2+ transients in response to antigen-receptor stimulation, however the downstream functional consequences of this impairment remain unclear. Here, we generated Slc8b1 knockout A20 B-cell lines using CRISPR/Cas9 technology and B-cell specific Slc8b1 knockout mice. Surprisingly, while loss of Slc8b1 in B lymphocytes led to reduction in SOCE, it had a marginal effect on mitochondrial Ca2+ extrusion, suggesting that NCLX is not the major mitochondrial Ca2+ extrusion mechanism in B cells. Furthermore, endoplasmic reticulum (ER) Ca2+ content and rates of ER depletion and refilling remained unaltered in Slc8b1 knockout B cells. Slc8b1 deficiency increased mitochondrial production of oxidants, reduced mitochondrial bioenergetics and altered mitochondrial ultrastructure. B-cell specific Slc8b1 knockout mice showed reduced germinal center B cell responses following foreign antigen and pathogen driven immune responses. Our studies provide novel insights into the function of Slc8b1 in germinal center B cells and its contribution to B-cell signaling and effector function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.