Abstract

As a part of our initiative aimed at a large-scale comparative analysis of fungal mitochondrial genomes, we determined the complete DNA sequence of the mitochondrial genome of the yeast Candida subhashii and found that it exhibits a number of peculiar features. First, the mitochondrial genome is represented by linear dsDNA molecules of uniform length (29 795 bp), with an unusually high content of guanine and cytosine residues (52.7 %). Second, the coding sequences lack introns; thus, the genome has a relatively compact organization. Third, the termini of the linear molecules consist of long inverted repeats and seem to contain a protein covalently bound to terminal nucleotides at the 5′ ends. This architecture resembles the telomeres in a number of linear viral and plasmid DNA genomes classified as invertrons, in which the terminal proteins serve as specific primers for the initiation of DNA synthesis. Finally, although the mitochondrial genome of C. subhashii contains essentially the same set of genes as other closely related pathogenic Candida species, we identified additional ORFs encoding two homologues of the family B protein-priming DNA polymerases and an unknown protein. The terminal structures and the genes for DNA polymerases are reminiscent of linear mitochondrial plasmids, indicating that this genome architecture might have emerged from fortuitous recombination between an ancestral, presumably circular, mitochondrial genome and an invertron-like element.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.