Abstract

The complete mitochondrial genome of Dastarcus helophoroides (Coleoptera: Bothrideridae) which consists of 13 PCGs, 22 tRNA genes, two rRNA genes and a non-coding region (D-loop), is sequenced for its nucleotide sequence of15,878 bp (GenBank: KF811054.1). The genome has a typical gene order which is identical to other Coleoptera species. Except for COI gene generally starts with non-canonical initial codon, all protein-coding genes start with ATN codon and terminate with the stop codon TA(A) or TAG. The secondary structure of rrnL and rrnS consists of 48 helices (contains four newly proposed helices) and 35 helices (contains two newly proposed helices) respectively. All 22 tRNAs in D. helophoroides are predicted to fold into typical cloverleaf secondary structure, except trnS1 (AGN), in which the dihydrouracil arm (DHU arm) could not form stable stem-loop structure. Thirteen protein-coding genes (nucleotide dataset and nucleic acid dataset) of the available species (29 taxa) have been used to infer the phylogenetic relationships among these orders. Tenebrionoidea and Cucujoidea form a sister group, and D. helophoroides is classified into Cucujoidea (Bothrideridae). The study first research on the phylogenetic analyses involving to the D. helophoroides mitogenome, and the results strongly bolster the current morphology-based hypothesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call