Abstract

In isolated mitochondria the consequences of oxidative phosphorylation uncoupling are well defined, whereas in intact cells various effects have been described. Uncoupling liver cells with 2,4-dinitrophenol (DNP) in the presence of dihydroxyacetone (DHA) and ethanol results in a marked decrease in mitochondrial transmembrane electrical potential (DeltaPsi), ATP/ADP ratios and gluconeogenesis (as an ATP-utilizing process), whereas the increased oxidation rate is limited and transient. Conversely, when DHA is associated with octanoate or proline, DNP addition results in a very large and sustained increase in oxidation rate, whereas the decreases in DeltaPsi, ATP/ADP ratios and gluconeogenesis are significantly less when compared with DHA and ethanol. Hence significant energy wastage (high oxidation rate) by uncoupling is achieved only with substrates that are directly oxidized in the mitochondrial matrix. Conversely in the presence of substrates that are first oxidized in the cytosol, uncoupling results in a profound decrease in mitochondrial DeltaPsi and ATP synthesis, whereas energy wastage is very limited.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.