Abstract

In this paper, the thermal decomposition physical models of different CL-20 polymorph crystals and their polymer bonded explosives (PBXs) bonded by polymeric matrices using polyisobutylene (PIB), acrylonitrile butadiene rubber (NBR), styrene butadiene rubber (SBR), Viton A, and Fluorel binders are obtained and used to predict the temperature profiles of constant rate decomposition. The physical models are further supported by the detailed decomposition pathways simulated by a reactive molecular dynamics (ReaxFF-lg) code. It has been shown that both e-CL-20 and α-CL-20 decompose in the form of γ-CL-20, resulting in close activation energy (169 kJ mol–1) and physical model (first-order autoaccelerated model, AC1). Fluoropolymers could change the decomposition mechanism of e-CL-20 from the “first-order autocatalytic” model to a “three-dimensional nucleation and growth” model (A3), while the polymer matrices of Formex P1, Semtex, and C4 could change e-CL-20 decomposition from a single-step process to a multis...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.