Abstract
The Dirac operator, acting in three dimensions, is considered. Assuming that a large mass $m>0$ lies outside a smooth and bounded open set $\Omega\subset\R^3$, it is proved that its spectrum is approximated by the one of the Dirac operator on $\Omega$ with the MIT bag boundary condition. The approximation, which is developed up to and error of order $o(1/\sqrt m)$, is carried out by introducing tubular coordinates in a neighborhood of $\partial\Omega$ and analyzing the corresponding one dimensional optimization problems in the normal direction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.