Abstract

Meander-line, or zig-zag, MRI surface coils theoretically promise spatially uniform fields with optimal field localization close to the coil. In reality, they suffer poorer than expected field localizations and acquired images are often highly inhomogeneous, plagued by repeating stripe-like signal-loss artifacts. We show that both these detrimental effects arise from coil design based on the same invalid approximation in the underlying theory. Here, the conventional approximation is corrected, yielding a modified coil design that validates the new theory by rectifying the above problems. Specifically, an easily implementable coil correction, which amounts to the addition of a single extra turn of wire, is introduced and shown to increase signal uniformity by an order of magnitude, eliminate image artifacts, and reduce unwanted signal interference from deeper within the sample by tightening the coil field localization to close to the coil, as intended for zig-zag designs. With independent optimization of coil size and imaging depth possible, such corrected meander-lines surface coils may be well suited for large area, near-surface imaging and spectroscopy applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call