Abstract
Copper mineralization in the Lower Paleozoic sedimentary cover of the Anti-Atlas (Morocco) is continually being revised not only to improve its mining capacity, but also to determine its origin, which remains a matter of debate. As evidenced by the various models proposed, the related research is fragmented, localized, and confusing. The origin of the Anti-Atlas Lower Paleozoic copper mineralization is shared between synergistic and epigenetic processes or a superposition of the two processes. Based on new tectono-magmatic data and a reinterpretation of the ore structural arrangement, we propose a link between the last concentration of copper deposits and the Late Triassic–Early Liassic CAMP (Central Atlantic Magmatic Province) tectono-thermal event, as evidenced by the significant concentration of copper mineralization in the three NE–SW corridors affected by extensional faults, some of which are filled with dolerite CAMP magma. The heat flow generated by the mafic dykes within these reactivated corridors causes mineralized fluids to up well into the sedimentary layers, depositing material rich in juvenile or leached copper, or even a mixture of the two. In some cases, these fluids are trapped by fracture systems that accompany passive folds initiated on normal faults. In other cases, these fluids can infiltrate bedding planes, and even karst caves, formed during carbonate exhumation. Notably, extensive NE–SW faults systematically cover the early Hercynian structures, suggesting that they belong to a post-Hercynian extensional episode. During the Late Triassic, the global fragmentation of the Pangaea supercontinent was manifested by the stretching of the continental crust at the margin of northwest Africa, with the simultaneous opening of the Central Atlantic Ocean and emplacement of CAMP magmatism. This last and often overlooked tectonothermal event must be considered in the remobilization and reconcentration of copper mineralization and other mineralization in Morocco.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.