Abstract

BackgroundBordetella petrii is the only environmental species hitherto found among the otherwise host-restricted and pathogenic members of the genus Bordetella. Phylogenetically, it connects the pathogenic Bordetellae and environmental bacteria of the genera Achromobacter and Alcaligenes, which are opportunistic pathogens. B. petrii strains have been isolated from very different environmental niches, including river sediment, polluted soil, marine sponges and a grass root. Recently, clinical isolates associated with bone degenerative disease or cystic fibrosis have also been described.ResultsIn this manuscript we present the results of the analysis of the completely annotated genome sequence of the B. petrii strain DSMZ12804. B. petrii has a mosaic genome of 5,287,950 bp harboring numerous mobile genetic elements, including seven large genomic islands. Four of them are highly related to the clc element of Pseudomonas knackmussii B13, which encodes genes involved in the degradation of aromatics. Though being an environmental isolate, the sequenced B. petrii strain also encodes proteins related to virulence factors of the pathogenic Bordetellae, including the filamentous hemagglutinin, which is a major colonization factor of B. pertussis, and the master virulence regulator BvgAS. However, it lacks all known toxins of the pathogenic Bordetellae.ConclusionThe genomic analysis suggests that B. petrii represents an evolutionary link between free-living environmental bacteria and the host-restricted obligate pathogenic Bordetellae. Its remarkable metabolic versatility may enable B. petrii to thrive in very different ecological niches.

Highlights

  • Bordetella petrii is the only environmental species hitherto found among the otherwise host-restricted and pathogenic members of the genus Bordetella

  • B. petrii, B. bronchiseptica and B. avium share 2,049 CDSs, which represent the Bordetella core gene set, which was likely inherited from a common ancestor

  • Evolution of the B. bronchiseptica-derived host restrictedpathogens B. pertussis and B. parapertussis was dominated by substantial gene decay and loss

Read more

Summary

Introduction

Despite the availability of vaccines, there are still 300,000 deaths/year caused by B. pertussis and significant economic losses associated with infections in poultry and cattle. The genomes of these Bordetellae were recently sequenced and analyzed [4,5]. The genomes of the human pathogens B. pertussis and B. parapertussis showed that they are independent derivatives of B. bronchiseptica-like ancestors They both underwent significant gene loss, probably mediated by insertion sequence (IS) elements, during the process of host adaptation, as indicated by their smaller genome sizes compared to that of B. bronchiseptica and the presence of many pseudogenes. The evolution of humanadapted species is characterized by massive genome reduction, lack of horizontal acquisition of genetic material and significant differences in virulence gene expression among species [4,6]

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.