Abstract

AlF3 is a strong Lewis acid and several hydrates of it are known, namely the monohydrate, the trihydrate (of which two polymorphs have been described) and the nonohydrate, which forms in the abundance of water, as well as a more complex fluoride of composition Al0.82□0.18F2.46(H2O)0.54 whose structure has been related to the ReO3 type. The monohydrate features edge connected [AlF6] octahedra, in the tri- and nonahydrate mixed F/O coordination of aluminum is observed. Here we report on a new aluminium fluoride hydrate, AlF3·6H2O, which could be obtained via ionothermal synthesis in the ionic liquid n-hexyl-pyridinium tetrafluoroborate. The ionic liquid serves in the synthesis of AlF3·6H2O as the reaction partner (fluoride source) and solvent. Overmore it controls the water activity allowing access to the missing AlF3·6H2O. Single-crystal X-ray diffraction analysis of AlF3·6H2O shows that it crystallizes in the anti-Li3Bi-type of structure according to F3[Al(H2O)6] (Fm-3m, a = 893.1(2) pm, Z = 4) featuring hexaaqua aluminium(III) cations and isolated fluoride anions. The compound was further characterized by powder X-ray diffraction, TG/DTA, IR analyses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.