Abstract

Neurodegenerative diseases such as Parkinson's disease (PD) are characterized by the death of neurons in specific areas of the brain. One of the proteins that is involved in the pathogenesis of PD is α-synuclein (α-syn). α-Syn is a normal protein that is found in all neurons, but in PD, it misfolds and aggregates into toxic fibrils. These fibrils can then coalesce into pathological inclusions, such as Lewy bodies and Lewy neurites. The pathogenic pathway of PD is thought to involve a number of steps, including misfolding and aggregation of α-syn, mitochondrial dysfunction, protein clearance impairment, neuroinflammation and oxidative stress. A deeper insight into the structure of α-syn and its fibrils could aid in understanding the disease's etiology. The prion-like nature of α-syn is also an important area of research. Prions are misfolded proteins that can spread from cell to cell, causing other proteins to misfold as well. It is possible that α-syn may behave in a similar way, spreading from cell to cell and causing a cascade of misfolding and aggregation. Various post-translational alterations have also been observed to play a role in the pathogenesis of PD. These alterations can involve a variety of nuclear and extranuclear activities, and they can lead to the misfolding and aggregation of α-syn. A better understanding of the pathogenic pathway of PD could lead to the development of new therapies for the treatment of this disease.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call