Abstract

The mirid bug Apolygus lucorum has become a major agricultural pest since the large-scale cultivation of Bt-cotton. It was assumed that A. lucorum, similarly to other phloem sap insects, could secrete saliva that contains effector proteins into plant interfaces to perturb host cellular processes during feeding. However, the secreted effectors of A. lucorum are still uncharacterized and unstudied. In this study, 1878 putative secreted proteins were identified from the transcriptome of A. lucorum, which either had homology with published aphid effectors or shared common features with plant pathogens and insect effectors. One hundred and seventy-two candidate effectors were used for cell death-inducing/suppressing assays, and a putative salivary gland effector, Apolygus lucorum cell death inhibitor 6 (Al6), was characterized. The mRNAs of Al6 were enriched at feeding stages (nymph and adult) and, in particular, in salivary glands. Moreover, we revealed that the secreted Al6 encoded an active glutathione peroxidase that reduced reactive oxygen species (ROS) accumulation induced by INF1 or Flg22. Expression of the Al6 gene in planta altered insect feeding behavior and promoted plant pathogen infections. Inhibition of cell death and enhanced plant susceptibility to insect and pathogens are dependent on glutathione peroxidase activity of Al6. Thus, this study shows that a candidate salivary gland effector, Al6, functions as a glutathione peroxidase and suppresses ROS induced by pathogen-associated molecular pattern to inhibit pattern-triggered immunity (PTI)-induced cell death. The identification and molecular mechanism analysis of the Al6 candidate effector in A. lucorum will provide new insight into the molecular mechanisms of insect-plant interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.