Abstract

Abstract We construct an emulator for the halo mass function over group and cluster mass scales for a range of cosmologies, including the effects of dynamical dark energy and massive neutrinos. The emulator is based on the recently completed Mira-Titan Universe suite of cosmological N-body simulations. The main set of simulations spans 111 cosmological models with 2.1 Gpc boxes. We extract halo catalogs in the redshift range z = [0.0, 2.0] and for masses . The emulator covers an eight-dimensional hypercube spanned by { , , , σ 8, h, n s , w 0, w a }; spatial flatness is assumed. We obtain smooth halo mass functions by fitting piecewise second-order polynomials to the halo catalogs and employ Gaussian process regression to construct the emulator while keeping track of the statistical noise in the input halo catalogs and uncertainties in the regression process. For redshifts z ≲ 1, the typical emulator precision is better than 2% for and <10% for . For comparison, fitting functions using the traditional universal form for the halo mass function can be biased at up to 30% at for z = 0. Our emulator is publicly available at https://github.com/SebastianBocquet/MiraTitanHMFemulator.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call