Abstract

The minrank of a directed graph G is the minimum rank of a matrix M that can be obtained from the adjacency matrix of G by switching some ones to zeros (i.e., deleting edges) and then setting all diagonal entries to one. This quantity is closely related to the fundamental information-theoretic problems of (linear) index coding (Bar-Yossef et al., FOCS'06), network coding and distributed storage, and to Valiant's approach for proving superlinear circuit lower bounds (Valiant, Boolean Function Complexity '92). We prove tight bounds on the minrank of directed Erdos-Renyi random graphs G(n,p) for all regimes of 0<p<1. In particular, for any constant p, we show that minrk(G) = Theta(n/log n) with high probability, where G is chosen from G(n,p). This bound gives a near quadratic improvement over the previous best lower bound of Omega(sqrt{n}) (Haviv and Langberg, ISIT'12), and partially settles an open problem raised by Lubetzky and Stav (FOCS '07). Our lower bound matches the well-known upper bound obtained by the clique covering solution, and settles the linear index coding problem for random graphs. Finally, our result suggests a new avenue of attack, via derandomization, on Valiant's approach for proving superlinear lower bounds for logarithmic-depth semilinear circuits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.