Abstract

BackgroundA genome-wide association study (GWAS) using metabolite concentrations as proxies for enzymatic activity, suggested that two variants: rs2014355 in the gene encoding short-chain acyl-coenzyme A dehydrogenase (ACADS) and rs11161510 in the gene encoding medium-chain acyl-coenzyme A dehydrogenase (ACADM) impair fatty acid β-oxidation. Chronic exposure to fatty acids due to an impaired β-oxidation may down-regulate the glucose-stimulated insulin release and result in an increased risk of type 2 diabetes (T2D). We aimed to investigate whether the two variants associate with altered insulin release following an oral glucose load or with T2D.MethodsThe variants were genotyped using KASPar® PCR SNP genotyping system and investigated for associations with estimates of insulin release and insulin sensitivity following an oral glucose tolerance test (OGTT) in a random sample of middle-aged Danish individuals (n ACADS = 4,324; n ACADM = 4,337). The T2D-case-control study involved a total of ~8,300 Danish individuals (n ACADS = 8,313; n ACADM = 8,344).ResultsIn glucose-tolerant individuals the minor C-allele of rs2014355 of ACADS associated with reduced measures of serum insulin at 30 min following an oral glucose load (per allele effect (β) = -3.8% (-6.3%;-1.3%), P = 0.003), reduced incremental area under the insulin curve (β = -3.6% (-6.3%;-0.9%), P = 0.009), reduced acute insulin response (β = -2.2% (-4.2%;0.2%), P = 0.03), and with increased insulin sensitivity ISIMatsuda (β = 2.9% (0.5%;5.2%), P = 0.02). The C-allele did not associate with two other measures of insulin sensitivity or with a derived disposition index. The C-allele was not associated with T2D in the case-control analysis (OR 1.07, 95% CI 0.96-1.18, P = 0.21). rs11161510 of ACADM did not associate with any indices of glucose-stimulated insulin release or with T2D.ConclusionsIn glucose-tolerant individuals the minor C-allele of rs2014355 of ACADS was associated with reduced measures of glucose-stimulated insulin release during an OGTT, a finding which in part may be mediated through an impaired β-oxidation of fatty acids.

Highlights

  • A genome-wide association study (GWAS) using metabolite concentrations as proxies for enzymatic activity, suggested that two variants: rs2014355 in the gene encoding short-chain acyl-coenzyme A dehydrogenase (ACADS) and rs11161510 in the gene encoding medium-chain acyl-coenzyme A dehydrogenase (ACADM) impair fatty acid b-oxidation

  • They identified with genome-wide significance variants in two genes, one encoding short-chain acyl-coenzyme A dehydrogenase (ACADS) which is expressed in mitochondria and target short chain fatty acid (SCFA), and one encoding medium-chain acyl-coenzyme A dehydrogenase (ACADM) that target medium chain C4-C12 fatty acids (MCFA), where the corresponding metabolic phenotype matched the biochemical pathway of the enzymes

  • The aim of the present study was to investigate rs2014355 of ACADS and rs11161510 of ACADM in relation to indices of insulin release, insulin sensitivity, and fasting serum lipid levels in a large random sample of middle-aged individuals (n = 6,162); we examined the putative relation to type 2 diabetes (T2D) prevalence in a casecontrol study involving ~8,300 Danish individuals

Read more

Summary

Introduction

A genome-wide association study (GWAS) using metabolite concentrations as proxies for enzymatic activity, suggested that two variants: rs2014355 in the gene encoding short-chain acyl-coenzyme A dehydrogenase (ACADS) and rs11161510 in the gene encoding medium-chain acyl-coenzyme A dehydrogenase (ACADM) impair fatty acid b-oxidation. Chronic exposure to FFA is Recently, Gieger et al (2008) conducted a genomewide association study (GWAS) in 284 healthy men characterized by quantitative measurements of 363 metabolites obtained from fasting serum samples, and used concentration ratios for the metabolites as proxies for enzymatic activity [10]. They identified with genome-wide significance variants in two genes, one encoding short-chain acyl-coenzyme A dehydrogenase (ACADS) which is expressed in mitochondria and target short chain fatty acid (SCFA), and one encoding medium-chain acyl-coenzyme A dehydrogenase (ACADM) that target medium chain C4-C12 fatty acids (MCFA), where the corresponding metabolic phenotype matched the biochemical pathway of the enzymes. In situations of prolonged starvation, these individuals may become hypoglycemic and show hypoglycemia-related symptoms [10]

Objectives
Methods
Results
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call