Abstract
We prove that any 3-uniform hypergraph whose minimum vertex degree is at least 59+o(1)n2 admits an almost-spanning tight cycle, that is, a tight cycle leaving o(n) vertices uncovered. The bound on the vertex degree is asymptotically best possible. Our proof uses the hypergraph regularity method, and in particular a recent version of the hypergraph regularity lemma proved by Allen, Böttcher, Cooley and Mycroft.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.