Abstract

We investigate if consequential angular momentum losses (CAML) or an intrinsic deformation of the donor star in CVs could increase the CV bounce period from the canonical theoretical value ~65 min to the observed value $P_{min} \approx77$ min, and if a variation of these effects in a CV population could wash out the theoretically predicted accumulation of systems near the minimum period (the period spike). We are able to construct suitably mixed CV model populations that a statisticial test cannot rule out as the parent population of the observed CV sample. However, the goodness of fit is never convincing, and always slightly worse than for a simple, flat period distribution. Generally, the goodness of fit is much improved if all CVs are assumed to form at long orbital periods. The weighting suggested by King, Schenker & Hameury (2002) does not constitute an improvment if a realistically shaped input period distribution is used. Put your abstract here.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.