Abstract

In this paper, we present an algorithm to compute the minimum perimeter convex hull of a given set of disjoint segments, so that each segment is contained in the hull completely or intersects with the boundary of the hull. The problem discussed in this paper is a novel transformation of TSP and MPSP. To solve this problem, we use a contraction strategy to contract the convex hull from a larger one which contains all endpoints of given segments to the direction of a smaller one which only contains some necessary points. We also assess the spatial relationships between outside segments and its convex hull, and add necessary segments into the convex hull successively by finding the shortest path of a sequence of segments. As a result, we present an O(n 5) algorithm for computing the minimum perimeter convex hull of a given set of disjoint segments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.