Abstract

Answering a question of H. Harborth, for any given a 1,...,a n > 0, satisfying \(a_i < \sum\limits_{j \ne i} {a_j } \)we determine the infimum of the areas of the simple n-gons in the Euclidean plane, having sides of length a 1,...,a n (in some order). The infimum is attained (in limit) if the polygon degenerates into a certain kind of triangle, plus some parts of zero area. We show the same result for simple polygons on the sphere (of not too great length), and for simple polygons in the hyperbolic plane. Replacing simple n-gons by convex ones, we answer the analogous questions. The infimum is attained also here for degeneration into a certain kind of triangle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.