Abstract
This paper presenting case studies in modern large scale constrained optimization, the purpose of which is to illustrate how recent advances in algorithms and modelling languages have made it easy to solve difficult optimization problems using of software. In this paper we use measure theory technique and iterative dynamic programming algorithm for solving of a trajectory optimization problem: how to drive a train so as to minimize fuel costs. In the first method, we optimal control problem to using of atomic measures change this one to an infinite dimensional linear programming problem and then we approximate the latter one to a finite dimensional linear programming problem, then by the optimal solution of the final problem we obtain sub-optimal controls and then by these controls we obtain the approximate solution of the original problem. In the second method, we will using dynamic programming as iteration for solving optimal control problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.