Abstract
The minimal polynomials of the images of unipotent elements in irreducible rational representations of the classical algebraic groups over fields of odd characteristic are found. These polynomials have the form (t - 1)d and hence are completely determined by their degrees. In positive characteristic the degree of such polynomial cannot exceed the order of a relevant element. It occurs that for each unipotent element the degree of its minimal polynomial in an irreducible representation is equal to the order of this element provided the highest weight of the representation is large enough with respect to the ground field characteristic. On the other hand, classes of unipotent elements for which in every nontrivial representation the degree of the minimal polynomial is equal to the order of the element are indicated. In the general case the problem of computing the minimal polynomial of the image of a given element of order ps in a fixed irreducible representation of a classical group over a field of characteristic p > 2 can be reduced to a similar problem for certain s unipotent elements and a certain irreducible representation of some semisimple group over the field of complex numbers. For the latter problem an explicit algorithm is given. Results of explicit computations for groups of small ranks are contained in Tables I - XII. The article may be regarded as a contribution to the programme of extending the fundamental results of Hall and Higman (1956) on the minimal polynomials from p-solvable linear groups to semisimple groups.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.