Abstract
The purpose of this paper is to explain and to generalize, in a homotopical way, the result of Barannikov–Kontsevich and Manin, which states that the underlying homology groups of some Batalin–Vilkovisky algebras carry a Frobenius manifold structure. To this extent, we first make the minimal model for the operad encoding BV-algebras explicit. Then, we prove a homotopy transfer theorem for the associated notion of homotopy BV-algebra. The final result provides an extension of the action of the homology of the Deligne–Mumford–Knudsen moduli space of genus 0 curves on the homology of some BV-algebras to an action via higher homotopical operations organized by the cohomology of the open moduli space of genus zero curves. Applications in Poisson geometry and Lie algebra cohomology and to the Mirror Symmetry conjecture are given.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.