Abstract

In this paper, we focus on the dynamics for a Lotka–Volterra type weak competition system with two free boundaries, where free boundaries which may intersect each other as time evolves are used to describe the spreading of two competing species, respectively. In the weak competition case, the dynamics of this model can be classified into four cases, which forms a spreading–vanishing quartering. The notion of the minimal habitat size for spreading is introduced to determine if species can always spread. Some sufficient conditions for spreading and vanishing are established. Also, when spreading occurs, some rough estimates for spreading speed and the long-time behavior of solutions are established.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.