Abstract
In this paper, yet another iterative procedure, namely the minimal error method (MEM), for solving stably the Cauchy problem in linear elasticity is introduced and investigated. Furthermore, this method is compared with another two iterative algorithms, i.e. the conjugate gradient (CGM) and Landweber–Fridman methods (LFM), previously proposed by Marin et al. [Marin, L., Háo, D.N., Lesnic, D., 2002b. Conjugate gradient-boundary element method for the Cauchy problem in elasticity. Quarterly Journal of Mechanics and Applied Mathematics 55, 227–247] and Marin and Lesnic [Marin, L., Lesnic, D., 2005. Boundary element-Landweber method for the Cauchy problem in linear elasticity. IMA Journal of Applied Mathematics 18, 817–825], respectively, in the case of two-dimensional homogeneous isotropic linear elasticity. The inverse problem analysed in this paper is regularized by providing an efficient stopping criterion that ceases the iterative process in order to retrieve stable numerical solutions. The numerical implementation of the aforementioned iterative algorithms is realized by employing the boundary element method (BEM) for two-dimensional homogeneous isotropic linear elastic materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.