Abstract

A blocking set B in projective plane PG (2, ) in a set of points such that every line in the plane intersect B in at least one point and there exist a line intersect B in only one point, we say that B is minimal if B has no minimal blocking subset. In this project we proved the non-existence of minimal blocking set of size 22 contains 8-secant and not contains 9-secant in PG (2, 13). Also we have proved the existence of minimal blocking set of the size 22 of redei-type. Also we give some properties of such blocking set.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.