Abstract

We introduce the notion of κ-entropy (κ ∈ ℝ, |κ| ≤ 1), starting from Kaniadakis' (2001, 2002, 2005) one-parameter deformation of the ordinary exponential function. The κ-entropy is in duality with a new class of utility functions which are close to the exponential utility functions, for small values of wealth, and to the power law utility functions, for large values of wealth. We give conditions on the existence and on the equivalence to the basic measure of the minimal κ-entropy martingale measure. Moreover, we provide characterizations of its density as a κ-exponential function. We show that the minimal κ-entropy martingale measure is closely related to both the standard entropy martingale measure and the well known q-optimal martingale measures. We finally establish the convergence of the minimal κ-entropy martingale measure to the minimal entropy martingale measure as κ tends to 0.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.