Abstract

Cortisol/corticosterone and the hypothalamic-pituitary-adrenal (HPA) axis serve an important role in modulating alcohol drinking behaviors. To date most alcohol research has focused on the functional involvement of corticosterone and the glucocorticoid receptor (GR), the primary receptor for corticosterone. Recent studies have indicated that the related mineralocorticoid receptor (MR), which binds both corticosterone and aldosterone, may also play a role in alcohol drinking. Therefore, the purpose of the present study was to test the functional role of MR signaling in alcohol self-administration via pharmacological antagonism of the MR with spironolactone. Male and female Long-Evans rats were trained to self-administer a sweetened alcohol solution (15% (v/v) alcohol +2% (w/v) sucrose). The effects of spironolactone (0, 10, 25, 50 mg/kg; IP) were tested on alcohol self-administration and under “probe extinction” conditions to measure the persistence of responding in the absence of the alcohol reinforcer. Parallel experiments in sucrose self-administration trained rats were used to confirm the specificity of spironolactone effects to an alcohol reinforcer. In female rats spironolactone (50 mg/kg) reduced alcohol self-administration and persistence of alcohol responding. In male rats spironolactone (25 and 50 mg/kg) reduced alcohol self-administration, but not persistence of alcohol responding. Spironolactone reduced sucrose intake in female rats only, and locomotion in male and female rats during sucrose self-administration. There was no effect of spironolactone on persistence of sucrose responding. These studies add to growing evidence that the MR is involved in alcohol drinking, while underscoring the importance of studying both male and female animals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.