Abstract
The Eddington-inspired-Born-Infeld (EiBI) model is reformulated within the mimetic approach. In the presence of a mimetic field, the model contains non-trivial vacuum solutions. We study a realistic primordial vacuum universe and we prove the existence of regular solutions. Besides, the linear instabilities in the EiBI model are found to be avoidable for some bouncing solutions. For a vacuum, static and spherically symmetric geometry, a new branch of solutions in which the black hole singularity that is replaced with a lightlike singularity is found.
Highlights
The inevitability of spacetime singularities in the context of General Relativity (GR) has inferred the incompleteness of the theory and has jeopardized the validity of it close to these events [1]
The non-trivial vacuum solutions are investigated by considering an expanding universe [36] and a static, spherically symmetric spacetime [37]. The former can be interpreted as a primordial stage of our universe before the reheating era. The latter is interesting because the interior structure as well as the spacelike singularity inside a black hole are expected to be amended in the mimetic Born-Infeld gravity
We have found some primordial de Sitter solutions and some bouncing solutions in a vacuum universe
Summary
The inevitability of spacetime singularities in the context of General Relativity (GR) has inferred the incompleteness of the theory and has jeopardized the validity of it close to these events [1]. The non-trivial vacuum solutions are investigated by considering an expanding universe [36] and a static, spherically symmetric spacetime [37] The former can be interpreted as a primordial stage of our universe before the reheating era. The latter is interesting because the interior structure as well as the spacelike singularity inside a black hole are expected to be amended in the mimetic Born-Infeld gravity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.